
Data Platforms

142Matteo Francia – University of Bologna

Data platform

Data platform
▪ An integrated set of technologies that collectively meets an organization’s end-to-end data

needs such as acquisition, storage, preparation, delivery, and governance, as well as a
security layer for users and applications

▪ Rationale: relieve users from complexity of administration and provision

▪ Not only technological skills, but also privacy, access control, etc.

▪ Users should only focus on functional aspects

Matteo Francia – University of Bologna 143

Data platform

Companies are collecting tons of data to enable advanced analytics
▪ Raw data is difficult to obtain, interpret, and maintain

▪ Data is more and more heterogeneous

▪ There is need for curating data to make it consumable

Where are we collecting/processing data?
▪ Getting value from data is not (only) a matter of storage

▪ Need integrated and multilevel analytical skills and techniques

Matteo Francia – University of Bologna 144

Data platform

Database
"A database is a structured and persistent collection of
information about some aspect of the real world organized
and stored in a way that facilitates efficient retrieval and
modification. The structure of a database is determined by
an abstract data model. Primarily, it is this structure that
differentiates a database from a data file."

Matteo Francia – University of Bologna 145

Özsu M.T. (2018) Database. In: Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_80734

Relational

pk pk

fk1 pk fk2

https://doi.org/10.1007/978-1-4614-8265-9_80734

ICT in companies

Up to some years ago, the main goal
of databases in companies has
been that of storing operational data,
i.e., data generated by operations
carried out within business
processes

Computer science was seen as a
subsidiary discipline that makes
information management faster and
cheaper, but does not create profits
in itself

The evolution of
information systems

◼ The role of computer science in companies has radically

changed since the early 70’s. ICT systems turned from

simple tools to improve process efficiency into key factors of

company organizations capable of deeply impacting on the

structure of business processes

The twofold role

of computer science

Auxiliary technology

to manage the

company

information system

Organizational

discipline that impacts

on business processes,

services, and company

structure

The new role of computer science in
decision making

An exponential increase in
operational data has made
computers the only tools suitable for
providing data for decision-making
performed by business managers

The massive use of techniques for
analyzing enterprise data made
information systems a key factor to
achieve business goals

Big data vs small data
The progressive digitalization of services and systems generates an
enormous mass of heterogeneous and real-time data

Big Data must be transformed into Small Data so that it can be exploited for
decision-making purposes

Small data is data that is 'small' enough for human comprehension. It is data
in a volume and format that makes it accessible, informative and actionable.

To manage the transformation, we need:
▪ Ad hoc Technology (e.g., NO SQL DBMS)

▪ Computing power (e.g., cloud & cluster computing)

▪ Automated systems (e.g., artificial intelligence)

▪ Digital culture

▪ The right processes (i.e., digital ready processes)
Big Data

Small Data

A typical scenario...
... is that of a large company, with several branches, whose managers wish
to quantify and evaluate the contribution given from each branch to the
global profit

A typical scenario...
... is that of a large company, with several branches, whose managers wish
to quantify and evaluate the contribution given from each branch to the
global profit

DATA
WAREHOUSE

a repository of information that collects and
integrates data coming from different,
heterogeneous sources making them
available for analyses aimed at planning and
decision making

Data platform

Data Warehouse
"A collection of data that supports decision-making
processes. It provides the following features: subject-
oriented, integrated and consistent, not volatile."

Matteo Francia – University of Bologna 152

Matteo Golfarelli and Stefano Rizzi. Data warehouse design: Modern principles and methodologies. McGraw-Hill, Inc., 2009.

Relational

Operational (relational)

databases

DWH
(ROLAP)

ETL

Fr
o

m
 D

B
 t

o
 D

W
H

The Data Warehouse

In the middle of this process, a data warehouse is a data repository that
fulfills the requirements

A data warehouse is a collection of data that supports decision-making
processes. It provides the following features:

▪ It is subject-oriented;

▪ It is integrated and consistent;

▪ It shows its evolution over time and it is not volatile

...subject-oriented

bookings

ticket
computation

exams

admissions

operational
database

application-oriented

divisions

subject-oriented

data
warehouse

physicians

patients

Data Warehouse

...integrated and
consistent

Data warehouses take advantage of
multiple data sources, such as data
extracted from production and then
stored to enterprise databases, or
even data from a third party’s
information systems. A data
warehouse should provide a unified
view of all the data.

Operational and

external data

Loading

Extraction

Cleaning

Transformation

Validation Filtering

...shows its temporal evolution

DW

Rich historical content,
time is part of the keys,
a snapshot of data taken at a
given time cannot be updated

Operational DB

Limited historical content,
time is often not part of the
keys, data are updated

...non volatile

▪ no need for advanced transaction management techniques required by operational
applications

▪ key problems are query-throughput and resilience

Operational DB

insert delete

update

Huge data volumes:
from 50 GBs to some TBs
in a few years

load accessDW

159

Two-layer architectures

Data Warehouse

Operational data External data

ETL tools

Data marts

Reporting

tools OLAP

tools

Data

mining

tools

What-if

analysis

tools

Source layer

Data warehouse

layer

Analysis

Data staging

Meta-data

DATA MART:

A subset or an

aggregation of the

data stored to a

primary data

warehouse. It

includes a set of

information pieces

relevant to a specific

business area,

corporate department,

or category of users.

The multidimensional model

It is the key for representing and querying information in a DW

Facts of interest are represented in cubes where:
▪ each cell stores numerical measures that quantify the fact from different points of view;

▪ each axis is a dimension for analyzing measure values;

▪ each dimension can be the root of a hierarchy of attributes used to aggregated measure
values

The Sales cube

date

product

store

10-1-2011

BigWare

screw

10

OLAP operators

roll-up

163

OLAP operators

drill-down

164

OLAP operators

slice-and-dice

The Dimensional Fact Model

The DFM is a graphical conceptual model for data mart design, devised to:
1. lend effective support to conceptual design

2. create an environment in which user queries may be formulated intuitively

3. make communication possible between designers and end users with the goal of formalizing
requirement specifications

4. build a stable platform for logical design (independently of the target logical model)

5. provide clear and expressive design documentation

The conceptual representation generated by the DFM consists of a set of
fact schemata that basically model facts, measures, dimensions, and
hierarchies

DFM: basic concepts

A fact is a concept relevant to decision-making processes. It typically models a set of events taking
place within a company (e.g., sales, shipments, purchases, ...). It is essential that a fact have dynamic
properties or evolve in some way over time

A measure is a numerical property of a fact and describes a quantitative fact aspect that is relevant to
analysis (e.g., every sale is quantified by its receipts)

A dimension is a fact property with a finite domain and describes an analysis coordinate of the fact.
Typical dimensions for the sales fact are products, stores, and dates

dimension

measure

fact

A fact expresses a many-
to-many relationship
between its dimensions

DFM: basic concepts

The general term dimensional attributes stands for the dimensions and other possible attributes,
always with discrete values, that describe them (e.g., a product is described by its type, by the
category to which it belongs, by its brand, and by the department in which it is sold)

A hierarchy is a directed tree whose nodes are dimensional attributes and whose arcs model many-to-
one associations between dimensional attribute pairs. It includes a dimension, positioned at the tree’s
root, and all of the dimensional attributes that describe it

HierarchyDimensional attribute
(level)

168

DFM vs. ERM

Summarizing

169

 Operational DBs Data warehouses
users thousands hundreds

workload predefined transactions ad hoc analysis queries

access
to hundreds of records,
read and write

to millions of records,
mostly read-only

goal application-dependent decision support

data
elementary, numeric and
alphanumeric

aggregated, mostly numeric

data integration application-based subject-based
quality in terms of integrity in terms of consistency

temporal span current data current and historical data
update continuous periodic
model normalized multidimensional

optimization
for OLTP accesses on a fraction
of database

for OLAP accesses on a
large part of database

Data platform: OLTP vs OLAP

Matteo Francia – University of Bologna 170

Data platform: OLTP vs OLAP

Characteristic OLTP OLAP

Nature Constant transactions (queries/updates) Periodic large updates, complex queries

Examples
Accounting database, online retail

transactions
Reporting, decision support

Type Operational data Consolidated data

Data retention Short-term (2-6 months) Long-term (2-5 years)

Storage Gigabytes (GB) Terabytes (TB) / Petabytes (PB)

Users Many Few

Protection
Robust, constant data protection and fault

tolerance
Periodic protection

Matteo Francia – University of Bologna 171

Data platform

Matteo Francia – University of Bologna 172

Relational NoSQL

(Non relational)

[{

"_id": 1,

“firstname": “Alice”

}, {

"_id": 2,

“name": “Bob”

}] Document

[

(“k1”, “v1),

(“k2”, “v2)

] Key-value

Graph

Operational (relational)

databases

DWH
(ROLAP)

ETL

From RELATIONAL to SCHEMALESS

Big data Vs?

Data platform

Data lake
Couto et al.: “A DL is a central repository
system for storage, processing, and analysis
of raw data, in which the data is kept in its
original format and is processed to be
queried only when needed. It can store a
varied amount of formats in big data
ecosystems, from unstructured, semi-
structured, to structured data sources”

Matteo Francia – University of Bologna 173

Couto, Julia, et al. "A Mapping Study about Data Lakes: An Improved Definition and Possible Architectures." SEKE. 2019.
https://dunnsolutions.com/business-analytics/big-data-analytics/data-lake-consulting

https://dunnsolutions.com/business-analytics/big-data-analytics/data-lake-consulting

Data Lake

Data platform

Matteo Francia – University of Bologna 174

Relational
NoSQL

(Non relational)

[{

"_id": 1,

“firstname": “Alice”

}, {

"_id": 2,

“name": “Bob”

}] Document

[

(“k1”, “v1),

(“k2”, “v2)

] Key-value

Graph

Operational (relational)

databases

DWH
(ROLAP)

ETL

Raw

Sto
rage o

f R
aw

 D
ata

Data lake

“If you think of a datamart as a store of bottled water – cleansed and
packaged and structured for easy consumption – the data lake is a large
body of water in a more natural state.”

▪ James Dixon, 2010

“A large storage system for raw, heterogeneous data, fed by multiple data
sources, and that allows users to explore, extract and analyze the data.”

▪ Sawadogo, P., Darmont, J. On data lake architectures and metadata management. J Intell Inf Syst
56, 97–120 (2021)

“A data lake is a central location that holds a large amount of data in its
native, raw format.”

▪ Databricks, 2021

175

Definitions

https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://databricks.com/discover/data-lakes/introduction

Data lake

The data lake started with the Apache Hadoop movement, using the Hadoop
File System (HDFS) for cheap storage

▪ Schema-on-read architecture

▪ Agility of storing any data at low cost

▪ Eludes the problems of quality and governance

A two-tier data lake + warehouse architecture is dominant in the industry
▪ HDFS replaced by cloud data lakes (e.g., S3, ADLS, GCS)

▪ Data lake data directly accessible to a wide range of analytics engines

▪ A subset of data is "ETL-ed" to a data warehouse for important decision support and BI apps

Matteo Francia – University of Bologna 176

Armbrust, M., Ghodsi, A., Xin, R., & Zaharia, M. (2021). Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and
Advanced Analytics. CIDR.

Definitions

Data lake

Downsides of data lakes
▪ Security

▪ All the data is stored and managed as files

▪ No fine-grained access control on the contents of files, but only coarse-grained access governing
who can access what files or directories

▪ Quality

▪ Hard to prevent data corruption and manage schema changes

▪ Challenging to ensure atomic operations when writing a group of files

▪ No roll-back mechanism

▪ Query performance

▪ Formats are not optimized for fast access

It is often said that the lake easily turns into a swamp

Matteo Francia – University of Bologna 177

Definitions

Data platform: DWH vs Data Lake

Matteo Francia – University of Bologna 178

Data platform: DWH vs Data Lake
Characteristics Data warehouse Data lake

Data Relational Non-relational and relational

Schema
Designed prior to implementation

(schema-on-write)

Written at the time of analysis

(schema-on-read)

Price/

performance

Fastest query results using higher cost

storage

Query results getting faster using

low-cost storage

Data quality
Highly curated data that serves as the

central version of the truth

Any data, which may or may not be

curated (e.g., raw data)

Users Business analysts
Data scientists, data developers, and

business analysts (using curated data)

Analytics Batch reporting, BI, and visualizations
Machine learning, predictive analytics,

data discovery, and profiling.

Matteo Francia – University of Bologna 179

Data platform

Data lakes have increasingly taken the role of data hubs
▪ Eliminate up-front costs of ingestion and ETL since data are stored in original format

▪ Once in DL, data are available for analysis by everyone in the organization

Drawing a sharp line been storage/computation/analysis is hard
▪ Is a database just storage?

▪ What about SQL/OLAP?

Blurring of the architectural borderlines
▪ DL is often replaced by “data platform” or “data ecosystem”

▪ Encompass systems supporting data-intensive storage, computation, analysis

Matteo Francia – University of Bologna 180

World

Data

Information

Knowledge

Wisdom

Data platform

We have services
▪ To transform data

▪ To support the
transformation

The (DIKW) pyramid
abstracts many
techniques and algorithms

▪ Standardization

▪ Integration

▪ Orchestration

▪ Accessibility through APIs

Matteo Francia – University of Bologna 181

Ingestion (acquiring/collect)
• Batch

• Streaming

Analytics (analyzing/process)
• Processing

• Batch

• Streaming

• Machine learning

Serve (deciding/consume)
• SQL

• BI tools (e.g., Tableau)

Data transformation

Storage

(organizing)
• File

• Object

• DB

Security
• Access Control

• Authorization

Supporting services

C
o
m

p
u
ti
n
g

N
e
tw

o
rk

in
g
,

e
tc

.

Example of data platform: Hadoop-based

A data platform on the Hadoop stack requires several tools

How many levels of complexity are hidden here?

How do you provision it?
▪ Manual provisioning on-premises

▪ Semi-automatic provisioning on-premises

▪ Automatic provisioning in the cloud

182

Storage .

Resources .

Application .

GUI .

Messaging .

Orchestration .

HDFS

YARN

Z
o

o
k
e

e
p
e

r

K
a

fk
a

Map Reduce
Batch

HBASE
NoSQL

Pig

Flink
real-time

Spark
in memPhoenix

Others

…

Hue

NoSQL

Impala
MPP

A
ir
fl
o

w
Hive

Data Lakehouse

Data warehouse architecture as we know today will replaced by a new

architectural pattern, the Lakehouse

The data lakehouse enables storing all your data once in a data lake and
efficiently doing AI and BI on that data directly at a massive scale

▪ ACID transaction support

▪ Schema enforcement

▪ Data governance

▪ All processes ensuring that data meet high quality standards throughout the whole lifecycles

▪ Including availability, usability, consistency, integrity, security

▪ Support for diverse workloads (e.g., data science, ML, SQL, analytics)

184

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html

Definitions

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html

Data Lakehouse

Data warehouse architecture as we know today will replaced by a new

architectural pattern, the Lakehouse

1st generation systems: data warehousing started with helping business
leaders get analytical insights

▪ Data in these warehouses would be written with schema-on-write, which ensured that the data
model was optimized for downstream BI consumption

▪ Several challenges

▪ They typically coupled compute and storage into an on-premises appliance

▪ This forced enterprises to provision and pay for the peak of user load and data under management, very costly

▪ More and more datasets were completely unstructured, e.g., video, audio, and text documents, which
data warehouses could not store and query at all

185

Armbrust, Michael, et al. "Lakehouse: a new generation of open platforms that unify data warehousing and advanced analytics." CIDR. 2021.

Matteo Francia – University of Bologna

Data Lakehouse

2nd generation: started offloading all the raw data into data lakes
▪ The data lake is a schema-on-read architecture that enabled the agility of storing any data at

low cost, but on the other hand, punted the problem of data quality and governance

▪ In this architecture, a small subset of data in the lake would later be ETLed to a downstream
data warehouse

▪ The use of open formats also made data lake data directly accessible to a wide range of other
analytics engines, such as machine learning systems

▪ From 2015 onwards, cloud data lakes, such as S3, ADLS and GCS, started replacing HDFS.
They have superior durability (often >10 nines), geo-replication, and most importantly,
extremely low cost with the possibility of automatic, even cheaper, archival storage, e.g., AWS
Glacier

Matteo Francia – University of Bologna 186

Data Lakehouse

Matteo Francia – University of Bologna 187

Dataset Search for Data Discovery,
Augmentation, and Explanation

▪ Recent years have seen an explosion in our ability to collect and catalog immense amounts of
data about our environment, society, and populace

▪ Governments, and organizations are increasingly making structured data available on the Web
and in various repositories and data lakes

▪ Combined with advances in analytics and machine learning, the availability of such data
should in theory allow us to make progress on many of our most important scientific and
societal questions

▪ This opportunity is often missed due to a central technical barrier: it is currently nearly
impossible for domain experts to weed through the vast amount of available information to
discover datasets that are needed for their specific application

▪ While search engines have addressed the discovery problem for Web documents, there are
many new challenges involved in supporting the discovery of structured data---from crawling
the Web in search of datasets, to the need for dataset-oriented queries and new strategies to
rank and display results

Matteo Francia – University of Bologna 188

Juliana Freire, keynote @ EDBT 2023

Data Lakehouse

While the cloud data lake and warehouse architecture is ostensibly cheap
due to separate storage (e.g., S3) and compute (e.g., Redshift), a two-tier
architecture is highly complex for users.

▪ Data is first ETLed into lakes, and then again ELTed into warehouses

▪ Enterprise use cases now include advanced analytics such as machine learning, for which
neither data lakes nor warehouses are ideal

▪ (Some) main problems:

▪ Reliability. Keeping the data lake and warehouse consistent is difficult and costly

▪ Data staleness. The data in the warehouse is stale compared to that of the data lake, with new data
frequently taking days to load

▪ Limited support for advanced analytics. Businesses want to ask predictive questions using their
warehousing data, e.g., “which customers should I offer discounts to?” None of the leading machine
learning systems directly work well on top of warehouses

▪ Process large datasets using complex non-SQL code

Matteo Francia – University of Bologna 189

Data Lakehouse

Lakehouse is a data management system based on low-cost and directly-
accessible storage

▪ Combine the key benefits of data lakes and data warehouses: low-cost storage in an open
format accessible by a variety of systems from the former, and powerful management and
optimization features from the latter.

▪ ACID transactions, data versioning, auditing, indexing, caching, and query optimization.

Key question: can we combine these benefits in an effective way?
▪ Direct access means that they give up some aspects of data independence, which has

been a cornerstone of relational DBMS design

▪ Lakehouses are an especially good fit for cloud environments with separate compute
and storage: different computing applications can run on-demand on completely separate
computing nodes (e.g., a GPU cluster for ML) while directly accessing the same storage data

Matteo Francia – University of Bologna 190

Data Independence

▪ Data independence can be explained
using the three-schema architecture

▪ Data independence refers characteristic
of being able to modify the schema at one
level of the database system without
altering the schema at the next higher
level

Matteo Francia – University of Bologna 191

Data Lakehouse

▪ Have the system store data in a low-cost object store (e.g., Amazon S3) using a standard file
format such as Apache Parquet

▪ Implement a transactional metadata layer on top of the object store that defines which objects
are part of a table version.

▪ Implement management features such as ACID transactions or versioning within the metadata
layer

▪ Although a metadata layer adds management capabilities, it is not sufficient to achieve good
SQL performance

▪ Data warehouses use several techniques to get state-of-the-art performance, such as storing hot
data on fast devices such as SSDs, maintaining statistics, building efficient access methods such as
indexes, and co-optimizing the data format and compute engine

▪ In a Lakehouse based on existing storage formats, it is not possible to change the format, but it is
possible to implement other optimizations that leave the data files unchanged, including caching,
auxiliary data structures such as indexes and statistics, and data layout optimizations

Matteo Francia – University of Bologna 192

Delta Lake
Achieving performant and mutable table storage over data lakes and object
storage is challenging, making it difficult to implement data warehousing
capabilities over them

▪ Most cloud object stores are merely key-value stores, with no cross-key consistency

▪ The most common way to store relational datasets in cloud object stores is using columnar file
formats such as Parquet and ORC, where each table is stored as a set of objects (Parquet
“files”), possibly clustered into “partitions” by some fields (e.g., separate objects by date)

However, it creates both correctness and performance challenges for more
complex workloads

▪ Multi-object updates are not atomic, there is no isolation between queries: for example, if a
query needs to update multiple objects in the table readers will see partial updates as the
query updates each object individually

▪ For large tables with millions of objects, metadata operations are expensive. The latency of
cloud object stores is so much higher that these data skipping checks can take longer than the
actual query

Matteo Francia – University of Bologna 193

Armbrust, Michael, et al. "Delta lake: high-performance ACID table storage over cloud object stores." Proceedings of the VLDB Endowment 13.12 (2020):
3411-3424.

Delta Lake
Delta Lake uses a transaction log
that is compacted into Apache
Parquet format to provide ACID
properties, time travel, and
significantly faster metadata
operations for large tabular datasets
(e.g., the ability to quickly search
billions of table partitions for those
relevant to a query)

▪ The log is stored in the _delta_log
subdirectory within the table

▪ It contains a sequence of JSON objects
with increasing, zero-padded numerical
IDs to store the log records, together with
occasional checkpoints for specific log
objects that summarize the log up to that
point

Matteo Francia – University of Bologna 194

Delta Lake

Each log record object (e.g., 000003.json) contains an array of actions to
apply to the previous version of the table to generate the next one

Examples of actions are:
▪ Change Metadata

▪ Add or Remove Files

It is necessary to compress the log periodically into checkpoints
▪ Checkpoints store all the non-redundant actions in the table’s log up to a certain log record ID,

in Parquet format

▪ Some sets of actions are redundant and can be removed Read the _last_checkpoint object in
the table’s log directory, if it exists, to obtain a recent checkpoint ID.

Matteo Francia – University of Bologna 195

Delta Lake
Example of a write transaction

▪ Identify a log record ID (i.e., looking forward from the last checkpoint ID). The transaction will
then read the data at table version r (if needed) and attempt to write log record r + 1

▪ Read data at table version r, if required combine previous checkpoint and further log records

▪ Write any new data objects that the transaction aims to add to the table into new files in the
correct data directories, generating the object names using GUIDs.

▪ This step can happen in parallel

▪ At the end, these objects are ready to reference in a new log record.

▪ Attempt to write the transaction’s log record into the r + 1 .json log object, if no other client has
written this object. This step needs to be atomic. If the step fails, the transaction can be
retried; depending on the query’s semantics

▪ Optionally, write a new .parquet checkpoint for log record r + 1

Creating the r + 1 .json record, needs to be atomic: only 1 client should
succeed. Not all large-scale storage systems have an atomic put operation

▪ Google Cloud Storage and Azure Blob Store support atomic put-if-absent operations

▪ HDFS, we use atomic renames to rename a temporary file to the target name

▪ Amazon S3 need ad-hoc protocols

Matteo Francia – University of Bologna 196

Lakehouse
Implement SQL optimizations in a Lakehouse independent of the chosen
data format

Format-independent optimizations are
▪ Caching: When using a transactional metadata layer such as Delta Lake, it is safe for a

Lakehouse system to cache files from the cloud object store on faster storage devices such as
SSDs and RAM on the processing nodes

▪ Auxiliary data: maintain column min-max statistics for each data file in the table within the
same Parquet file used to store the transaction log, which enables data skipping optimizations
when the base data is clustered by particular columns

▪ Data layout:

▪ record ordering: which records are clustered together and hence easiest to read together, e.g.
ordering records using individual dimensions or space-filling curves such as Z-order

▪ compression strategies differently for various groups of records, or other strategies [28].

One approach that we’ve had success with is offering a declarative version
of the DataFrame APIs used in these libraries, which maps data preparation
computations into Spark SQL query plans and can benefit from logical
optimizations

Matteo Francia – University of Bologna 198

Data lakehouse

Data lakehouse
▪ Data management architecture that

combines the flexibility, cost-efficiency,
and scale of data lakes with the data
management and ACID transactions of
data warehouses, enabling business
intelligence (BI) and machine learning
(ML) on all data

▪ Vendor lock in

199

https://www.databricks.com/glossary/data-lakehouse

https://www.databricks.com/glossary/data-lakehouse

Data lakehouse

Key technologies used to implement
open source Data Lakehouses

▪ Databricks’ Delta Lake

▪ Apache Hudi

▪ Apache Iceberg

200

https://databricks.com/blog/2021/05/19/evolution-to-the-data-lakehouse.html

Data warehouse Data lake Data lakehouse

Data format Closed, proprietary format
Open format (e.g.,

Parquet)
Open format

Types of data

Structured data, with limited

support for semi-structured

data

All types: Structured

data, semi-structured

data, textual data,

unstructured (raw)

data

All types: Structured

data, semi-structured

data, textual data,

unstructured (raw)

data

Data access
SQL-only, no direct access

to file

Open APIs for direct

access to files with

SQL, R, Python and

other languages

Open APIs for direct

access to files with

SQL, R, Python and

other languages

Reliability
High quality, reliable data

with ACID transactions

Low quality, data

swamp

High quality, reliable

data with ACID

transactions

Governance and

security

Fine-grained security and

governance for

row/columnar level for

tables

Poor governance as

security needs to be

applied to files

Fine-grained security

and governance for

row/columnar level for

tables

Performance High Low High

Scalability

Scaling becomes

exponentially more

expensive

Scales to hold any

amount of data at low

cost, regardless of

type

Scales to hold any

amount of data at low

cost, regardless of

type

Use case support

Limited to BI, SQL

applications and decision

support

Limited to machine

learning

One data architecture

for BI, SQL and

machine learning

https://databricks.com/blog/2021/05/19/evolution-to-the-data-lakehouse.html

Polyglot Persistence

201Matteo Francia – University of Bologna

Polyglot persistence

To each application the appropriate DBMS

Polyglot persistence

Polyglot persistence

To each application the appropriate DBMS - works well for OLTP

What about OLAP?

OLAP application

Polyglot persistence

Polyglot persistence: main challenges

Data model heterogeneity
▪ Support multiple models in the same database

▪ Or integrate data from different databases using different query languages

Schema heterogeneity
▪ Inter-collection: different records in different collections have different schemas

▪ Not a new problem: think federated databases, corporate mergers, etc.

▪ Intra-collection: different records in the same collection have different schemas

▪ Emerged with NoSQL databases

Data inconsistency
▪ Reconcile inconsistent versions of the same data (inter- or intra-collection)

Matteo Francia – University of Bologna 204

Data model heterogeneity

Matteo Francia – University of Bologna 205

Basic solutions

Some DBMSs offer multi-model support
▪ Extended RDBMSs

▪ KV implementable as a table with two fields: a string key, and a blob value

▪ Cypher query language on top of a relational implementation of a graph

▪ Hstore data type in PostgreSQL for wide-column-like implementation

▪ Scalabilty issue remains

▪ Multi-model NoSQL DBMSs

▪ ArangoDB, OrientDB

▪ Support all NoSQL data models, but not the relational one

Some approaches suggest strategies to model everything within RDBMSs
▪ DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas from nested key-value data.

In: 2016 ACM SIGMOD Int. Conf. on Management of Data, pp. 295-310. ACM (2016)

▪ Tahara, D., Diamond, T., Abadi, D.J.: Sinew: a SQL system for multi-structured data. In: 2014 ACM SIGMOD Int.

Conf. on Management of Data, pp. 815-826. ACM (2014)

Matteo Francia – University of Bologna 206

DM heterogeneity

A taxonomy for distributed solutions

Federated database system
▪ Homogeneous data stores, exposes a single standard query interface

▪ Features a mediator-wrapper architecture, employs schema-mapping and entity-merging techniques
for integration of relational data

Polyglot system
▪ Homogeneous data stores, exposes multiple query interfaces

▪ Takes advantage of the semantic expressiveness of multiple interfaces (e.g., declarative, procedural)

Multistore system
▪ Heterogeneous data stores, exposes a single query interface

▪ Provides a unified querying layer by adopting ontologies and applying schema-mapping and entity-
resolution techniques

Polystore system
▪ Heterogeneous data stores, exposes multiple query interfaces

▪ Choose from a variety of query interfaces to seamlessly query data residing in multiple data stores

Matteo Francia – University of Bologna 207

R. Tan, R. Chirkova, V. Gadepally and T. G. Mattson, "Enabling query processing across heterogeneous data models: A survey," 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp. 3211-3220.

DM heterogeneity

Advanced solutions

The challenge is to balance two often
conflicting forces.

▪ Location Independence: A query is written and
the system figures out which storage engine it
targets

▪ Semantic Completeness: A query can exploit
the full set of features provided by a storage
engine

Example of a polystore
▪ Island = a middleware application to support a set

of operations on a given data model

▪ Shim = a wrapper to convert from the island’s
query language to the target DB’s query language

Matteo Francia – University of Bologna 208

Vijay Gadepally, Kyle O'Brien, Adam Dziedzic, Aaron J. Elmore, Jeremy Kepner, Samuel Madden, Tim Mattson, Jennie Rogers, Zuohao She, Michael
Stonebraker: Version 0.1 of the BigDAWG Polystore System. CoRR abs/1707.00721 (2017)

DM heterogeneity

Advanced solutions
BigDAWG middleware consists of

▪ Optimizer: parses the input query and creates a
set of viable query plan trees with possible
engines for each subquery

▪ Monitor: uses performance data from prior
queries to determine the query plan tree with the
best engine for each subquery

▪ Executor: figures out how to best join the
collections and then executes the query

▪ Migrator: moves data from engine to engine
when the plan calls for such data motion

… and of course we have metadata
▪ Catalog: stores metadata about the system

▪ Databases: Databases, their engine membership,
and connection authentication information.

▪ Objects: Data objects (i.e., tables), field-names,
and object-to-database membership.

Matteo Francia – University of Bologna 209
Vijay Gadepally, Kyle O'Brien, Adam Dziedzic, Aaron J. Elmore, Jeremy Kepner, Samuel Madden, Tim Mattson, Jennie Rogers, Zuohao She, Michael
Stonebraker: Version 0.1 of the BigDAWG Polystore System. CoRR abs/1707.00721 (2017)

DM heterogeneity

Advanced solutions

Most notable multistore/polystore proposals
▪ BigDAWG

▪ Focus on the ability to “move” data from one DB to another to improve query efficiency

▪ V. Gadepally et al. Version 0.1 of the BigDAWG Polystore System. CoRR abs/1707.00721 (2017)

▪ Estocada

▪ Focus on taking advantage of possible (consistent) redundancy and previous query results

▪ R. Alotaibi et al. ESTOCADA: Towards Scalable Polystore Systems. Proc. VLDB Endow. 13(12): 2949-
2952 (2020)

▪ Awesome

▪ Focus on supporting common analytical functions

▪ S. Dasgupta. Analytics-driven data ingestion and derivation in the AWESOME polystore. IEEE BigData
2016: 2555-2564

▪ CloudMdsQL

▪ Focus on taking advantage of local data store native functionalities

▪ B. Kolev et al. CloudMdsQL: querying heterogeneous cloud data stores with a common language.
Distributed Parallel Databases 34(4): 463-503 (2016)

Matteo Francia – University of Bologna 210

DM heterogeneity

Beyond data model heterogeneity

What else is there?

Entity resolution
▪ Every approach needs some kind of integrated knowledge

▪ Ample research from federated database systems

▪ Usually “out-of-scope”

Management of schema heterogeneity and data inconsistency
▪ Usually addressed as different problems in the literature

Matteo Francia – University of Bologna 211

Schema heterogeneity

Heterogeneous data stored with variant schemata and structural forms
▪ Missing/additional attributes

▪ Different names/types of attributes

▪ Different nested structures

Two main problems
▪ Understand the data

▪ Query the data

Matteo Francia – University of Bologna 212

Understanding the data

Early work on XML
▪ To deal with the widespread lack of DTDs and XSDs

▪ Extract regular expressions to described the content of elements in a set of XML documents

Recent work on JSON
▪ Concise view: a single representation for all schema variations

▪ Union of all attributes

▪ M. Klettke et al. Schema extraction and structural outlier detection for JSON-based NoSQL data stores.,
in: Proc. BTW, volume 2105, 2015, pp. 425-444.

▪ A skeleton as the smallest set of core attributes according to a frequency-based formula

▪ L. Wang et al. Schema management for document stores, Proc. VLDB Endowment 8 (2015) 922-933.

▪ Comprehensive view: multiple representations (a different schema for every document)
▪ D. S. Ruiz, et al. Inferring versioned schemas from NoSQL databases and its applications, in: Proc. ER,

2015, pp. 467-480.

▪ Schema profile: explain why there are different schemas
▪ E. Gallinucci et al. Schema profiling of document-oriented databases. Inf. Syst. 75: 13-25 (2018)

Matteo Francia – University of Bologna 213

Schema heterogeneity

Schema profiling

Schema profiles explain
▪ What are the differences

between schemas

▪ When/why is one schema
used instead of the other

The problem of schema profiling is quite similar to a classification problem
▪ Classifiers are also used to describe the rules for assigning a class to an observation based on

the other observation features

▪ Based on the requirements collected from potential users, decision trees emerged as the
most adequate

Matteo Francia – University of Bologna 214

SchemaID User Activity Weight Duration Repetitions

S1 Jack Run 108

S2 John Leg press 80 4 23

S1 Kate Walk 42

S3 John Push-ups 8 40

D
o

c
u
m

e
n

ts
/

O
b
s
e
rv

a
tio

n
s

Schema / Class

Schema heterogeneity

Schema profiling

The documents are the observations

The schema are the classes

Schema heterogeneity

Schema profiling

Value-based

condition

Schema heterogeneity

Schema profiling

Value-based

condition

Schema-based

condition

Schema heterogeneity

‘CardioOn’: false

Schema profiling

Value-based

condition

Schema-based

condition

Schema heterogeneity

Preliminary activities

Semi-structured interviews with 5 users
▪ Application domains: fitness equipment sales, software development

▪ Understand goals, requirements, visualization format

▪ Not one complete/correct dataset description

Definition of schema profile characteristics
▪ Explicativeness

▪ Precision

▪ Conciseness

Schema heterogeneity

Explicativeness

Value-based (VB) conditions are preferred to schema-based (SB) ones
▪ SB: acknowledge a difference between schemata

▪ VB: explain it in terms of the values taken by an attribute

The less SB conditions, the more explicativeness

Schema heterogeneity

Precision

A decision tree is precise if all the leaves are pure
▪ A leaf is pure if all its observations belong to the same class

▪ Leaf vj is pure if entropy(vj) = 0

Entropy is strictly related to precision
▪ Divisive approaches typically

stop only when the leaves
are all pure

probability of

schema s

within leaf vj

Pure Almost

pure

Not

pure
Pure

Schema heterogeneity

Precision and conciseness

Minimization of entropy often leads to splitting observations of the same
class among several leaves

▪ Entropy's sole focus is on node purity

▪ More frequent when
the number of classes is high

Typically, precision is more
important than readability

In schema profiling, this is a critical problem
▪ It conflicts with the conciseness requirement

Schema heterogeneity

Conciseness

A maximally concise schema profile is one where there is
a single rule for each schema

Schema entropy: inverts the original definition of entropy, relating it to the
purity of the schemata instead of the purity of the leaves

▪ Entropy:
a leaf is pure if
it contains only documents
with the same class

▪ Schema entropy:
a schema is pure if
all its documents
are in the same leaf

Schema heterogeneity

Conciseness

A maximally concise schema profile is one where there is
a single rule for each schema

Schema entropy: inverts the original definition of entropy, relating it to the
purity of the schemata instead of the purity of the leaves

▪ Entropy:
a leaf is pure if
it contains only documents
with the same class

▪ Schema entropy:
a schema is pure if
all its documents
are in the same leaf

Pure

Pure

Pure

Not pure

Schema heterogeneity

Schema profiling example

v1 v1 v2 v3 v4

s1 40 s1 40

s2 30 s2 30

s3 20 s3 20

s4 10 s4 10

v1 v2 v1 v2 v3

s1 40 s1 40

s2 30 s2 30

s3 20 s3 20

s4 10 s4 4 3 3

Starting situation

E = 1,85 (maximum)

SE = 0 (minimum)

E = 1,38

SE = 0

E = 0,46

SE = 0,16

Best outcome

E = 0

SE = 0

Schema heterogeneity

Schema profiling algorithm

Introduced the notion of schema entropy loss

Defined a criterion for comparing two splits in the decision tree

Schema heterogeneity

Querying the data

One thing is understanding the data, another thing is enabling querying over
heterogeneous data

What we need
▪ Integration techniques to solve schema heterogeneity and produce a global knowledge

▪ Query rewriting techniques to translate queries on the global knowledge to queries on the
actual schemas

(Focus on OLAP queries)

227

Schema heterogeneity

Integration techniques

Integration at the intensional level
▪ Schema matching and mapping

▪ A match is a correspondence between attributes

▪ A mapping is a function to explain the relationship between attributes

▪ E.g., S1.FullName = CONCAT(S2.FirstName, S2.LastName)

Integration at the extensional level
▪ Entity resolution (a.k.a. record linkage or duplicate detection)

▪ Identifying (or linking, or grouping) different records referring
to the same real-world entity

▪ Aims at removing redundancy and increasing conciseness

▪ Data fusion

▪ Fuse records on the same real-world entity into a single record and resolve possible conflicts

▪ Aims at increasing correctness of data

228

E. Rahm, P.A. Bernstein, A survey of approaches to automatic schema matching, VLDB J. 10 (4) (2001)

Mandreoli, F., & Montangero, M. (2019). Dealing with data heterogeneity in a data fusion perspective: models, methodologies, and algorithms.
In Data Handling in Science and Technology (Vol. 31, pp. 235-270). Elsevier.

Schema heterogeneity

OLAP querying

A first approach to OLAP on heterogeneous data

229

Gallinucci, E., Golfarelli, M., & Rizzi, S. (2019). Approximate OLAP of document-oriented databases: A variety-aware approach. Information
Systems, 85, 114-130.

Schema heterogeneity

OLAP querying

Some limitations
▪ Expensive querying

▪ Does not scale well with the number of schemas

▪ Expensive integration

▪ High levels of heterogeneity imply complex rewriting rules (requiring knowledge and time)

▪ Assuming to be always able to obtain a global schema is a bit pretentious

230

Schema heterogeneity

OLAP querying

Some limitations
▪ Expensive querying

▪ Does not scale well with the number of schemas

▪ Expensive integration

▪ High levels of heterogeneity imply complex rewriting rules (requiring knowledge and time)

▪ Assuming to be always able to obtain a global schema is a bit pretentious

▪ “One does not simply define a global schema”

231

Schema heterogeneity

New integration techniques

232

Curry, E. (2020). Dataspaces: Fundamentals, Principles, and Techniques. Real-time Linked Dataspaces: Enabling Data Ecosystems for Intelligent
Systems, 45-62.

Schema heterogeneity

New integration techniques

Replace the global schema with a dataspace
▪ A dataspace is a lightweight integration approach providing basic query expressive power on a

variety of data sources, bypassing the complexity of traditional integration approaches and
possibly returning best-effort or approximate answers

▪ Franklin, M., Halevy, A., & Maier, D. (2005). From databases to dataspaces: a new abstraction for
information management. ACM Sigmod Record, 34(4), 27-33.

Replace traditional integration with a pay-as-you-go approach
▪ The system incrementally understands and integrates the data over time by asking users to

confirm matches as the system runs

▪ Jeffery, S. R., Franklin, M. J., & Halevy, A. Y. (2008, June). Pay-as-you-go user feedback for
dataspace systems. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data (pp. 847-860).

233

Curry, E. (2020). Dataspaces: Fundamentals, Principles, and Techniques. Real-time Linked Dataspaces: Enabling Data Ecosystems for Intelligent
Systems, 45-62.

Schema heterogeneity

New integration techniques

Introducing new concepts
▪ Entities: representation of a real-world entity

▪ E.g., customers, products, orders, etc.

▪ Features: univocal representation of a group of semantically equivalent attributes

▪ E.g., CustomerName = { S1.name, S2.fullname, S3.customer, S4.cName, … }

▪ Mapping functions must be defined/definable between every couple

The dataspace becomes an abstract view in terms of features and entities

234

Schema heterogeneity

New OLAP querying

What it looks like

235

Forresi, C., Gallinucci, E., Golfarelli, M., & Hamadou, H. B. (2021). A dataspace-based framework for OLAP analyses in a high-variety
multistore. The VLDB Journal, 30(6), 1017-1040.

Schema heterogeneity

New OLAP querying

Previous issues
▪ Expensive querying

▪ Schema heterogeneity solved at query time

▪ Requires complex - but feasible - algorithms

▪ Expensive integration

▪ Pay-as-you-go approach is quicker, iterative, and more flexible

▪ Dataspace is conceptual, untied to logical data modeling

Now we have a multistore dealing with multiple
data models and schema heterogeneity

236

Forresi, C., Gallinucci, E., Golfarelli, M., & Hamadou, H. B. (2021). A dataspace-based framework for OLAP analyses in a high-variety
multistore. The VLDB Journal, 30(6), 1017-1040.

Schema heterogeneity

Data inconsistency

Intra-collection
▪ Due to denormalized data modeling

Inter-collection
▪ Due to analytical data offloading

▪ To reduce costs and optimize performance, the historical depth of databases is kept limited

▪ After some years, data are offloaded to cheaper/bigger storages, e.g., cloud storages, data lakes

▪ Offloading implies a change of data model, a change of schema, and obviously an overlapping of
instances with the original data

▪ Due to multi-cloud architectures

▪ Enables the exploitation of data spread across different providers and architectures, all the while
overcoming data silos through data virtualization

▪ Typical in presence of many company branches

Solutions?
▪ Traditional ETL

▪ Solve inconsistencies on-the-fly

237

Data fusion

Merge operator
▪ Originally introduced as “full outer join merge”

▪ Naumann, F., Freytag, J. C., & Leser, U. (2004). Completeness of integrated information
sources. Information Systems, 29(7), 583-615.

▪ Aims to keep as much information as possible when joining the records of two schemas

▪ Avoid any loss of records

▪ Resolve mappings by providing
transcoded output

▪ Resolving conflicts whenever
necessary

238

Data inconsistency

Data fusion

Merge operator
▪ Originally introduced as “full outer join merge”

▪ Naumann, F., Freytag, J. C., & Leser, U. (2004). Completeness of integrated information
sources. Information Systems, 29(7), 583-615.

▪ Aims to keep as much information as possible when joining the records of two schemas

▪ Avoid any loss of records

▪ Resolve mappings by providing
transcoded output

▪ Resolving conflicts whenever
necessary

239

S
c
h

e
m

a

m
a

tc
h

in
g

Entity

linking

Data

fusion

Data inconsistency

Data fusion

Merge operator

240

Data inconsistency

On-the-fly data fusion

Merge operator in a query plan
▪ Take the data from heterogeneous

sources (in different colors)

▪ Extract records of the single entites
(e.g., customer, products)

▪ Merge each entity

▪ Join and produce the final result

Now we have a multistore
dealing with multiple data models,
schema heterogeneity, and data
inconsistency

▪ Are we done? Not yet!

241

Data inconsistency

On-the-fly data fusion

Main issue: performance
▪ Collections accessed more than once

▪ Most effort pulled to the middleware

What can we do about it?
▪ Exploit more the local DBMSs

▪ Exploit local data modelling

▪ Carry out multi-entity merges

Issues
▪ Several query plans could be devised

▪ Hard to find the most efficient one

242

Logical optimization

Logical rules to transform a query plan into a more efficent one
▪ Predicate push-down: applying selection predicates as close to the source as possible

▪ Not always feasible (e.g., in presence of inconsistent data)

▪ Column pruning: extracting the only attributes relevant for the query

▪ Not for granted when writing a custom query language

▪ Join sequence reordering: changing the order to do binary joins

▪ Not so easy when merges are involved as well

▪ Not so easy when data comes from different sources

243

Query optimization

Same query, several query plans

What is the most efficient solution?
▪ Single-entity merge and subsequent joins

▪ Nest relational data and multi-merge with documents

▪ Join relational data and multi-merge with flattened documents

Depends on several factors
▪ On the capabilities of each DBMS/middleware

▪ On the presence of indexes and statistics

▪ On the resources available to each DBMS/middleware

▪ On the number of records involved on each side

… which can change over time

244

Consistent representation

of customers, orders, and

orderlines

Query optimization

Cost modelling

Cost-based evaluation of different plans
▪ White-box cost modelling

▪ Associate theoretical formulas to each query operators, then build up the cost of a query by summing
the cost of each operation

▪ Cost can be determined in terms of disk I/O, CPU, network

▪ Requires an enormous effort to effectively model the many factors that contribute to query costs in a
complex and heterogeneous environment like a multistore

▪ Black-box cost modelling

▪ Hide the behavior of an execution engine within a black-box, where the known information is mostly
limited to the issued queries and the given response times

▪ Cost is determined in terms of time

▪ Easily adapts to evolving environments

▪ Suffers from cold-start

245

Query optimization

Cost modelling

White-box
cost modelling
example

246

Forresi, C., Francia, M., Gallinucci, E., & Golfarelli, M. (2021). Optimizing execution plans in a multistore. In Advances in Databases and Information
Systems: 25th European Conference, ADBIS 2021.

Query optimization

Cost modelling

Black-box
cost modelling
example

247

Forresi, C., Francia, M., Gallinucci, E., & Golfarelli, M. (2022). Cost-based Optimization of Multistore Query Plans. Information Systems Frontiers, 1-27.

Query optimization

